
the dependence of the normalized density k/6 on the dimensionless coordinate $ = r/(2/~) 
for the parameter X; Fig. 3 shows the dependence of the constant 6 on e. For the absent 
ampere force (~ = 0), evidently, k = exp (_$2) and 6 = i. Taking into account ampere forces 
causes the source function ~/6 to peak at the origin of coordinates, but for any intensity 
of the ampere interaction the diffusive dispersal of the ensemble of microarcs is not blocked 
by this interaction, and a limiting stationary distribution density of microarcs does not 
exist. This is a consequence of the fact that the ampere force, passing through a maximum, 
approaches zero at infinity. 

Thus it has been demonstrated that the diffusion mechanism for dispersal of a compact 
distribution of microarcs by turbulent pulsations on the surface of an electrode is in prin- 
ciple possible. 

We thank P. P. Lazarev for assistance in performing the calculations. 
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DISCHARGE ACCOMPANYING LEAKAGE OF MAGNETIC FLUX FROM PLASMA 

INTO AN INSULATOR 

S. F. Garanin UDC 533.95 

In many problems, such as the confinement of plasma with a magnetic field by walls, com- 
pression of a magnetized plasma with liners, etc., losses of magnetic flux and plasma owing 
to diffusion of the field and heat conduction to the wall must be taken into account. The 
role of the discharge arising in the plasma as magnetic flux leaks out of it must be espe- 
cially significant for a hydrogen plasma, whose conductivity, owingto the weak effect of 
radiative processes, can be large compared with the conductivity of the plasma in a magneti- 
cally compressed discharge [i] arising on the surface of the wall. In this case, if the 
plasma density is too high, the resistance of the discharge will be determined by the dis- 
charge along the hydrogen plasma. 

We shall study the development of this discharge in the case of a hydrogen plasma with 
a magnetic field bounded by a rigid nonconducting insulating wall. This problem was solved 
qualitatively in [2, 3], and as a result the effective diffusion coefficient for a plasma with 

~ 1 (6 = 16~NoT0/H~ is the ras of the thermal pressure of the plasma to the magnetic 
pressure, and No, To, H0 are the density, temperature, and magnetic field in the plasma far 
from the discharge zone) D ~ cH0/4~eN 0, and for B ~ i, D ~ cT0/10eH 0. 

In this paper the structure of the current layer near the wall is studied quantitatively 
and the boundary condition with whose help the effect of this discharge on the motion of the 
plasma in the entire volume can be described is formulated. 

Let all quantities depend on the coordinate X and the time t, let the magnetic H and 
electric E fields be perpendicular to one another and the X axis, and let the characteristic 
times be long compared with the gas-dynamic times, so that there is enough time for the total 
pressure in the system to be equalized: 

2 N T  + H~/8~  = Po ~ 2NoT0 + H~d 8~" ( 1 ) 

The p l a s m a  d e n s i t y  in  t h e  main  vo lume  i s  a s sumed  t o  be  low compared  w i t h  t h e  d e n s i t y  o f  t h e  
d i s c h a r g e  zone  n e a r  t h e  w a l l .  I n  t h i s  c a s e ,  a s  shown i n  [ 2 ] ,  t h e  p r o b l e m  i s  q u a s i s t a t i o n a r y ,  
i . e . ,  t h e  t i m e  d e r i v a t i v e s  in  t h e  m a g n e t i c  and e l e c t r i c  f i e l d  e q u a t i o n s  and t h e  e q u a t i o n  o f  
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thermal balance of the plasma in the discharge zone can be neglected, while the electric 
field and the energy flux can be assumed to be constant. Then these equations have the form 

E = c OH bAsT OT cT O~ c 
4~aoX---;-~-~' Q=-x-~-~-~nebA~-~ +-~ EH~ (2) 

where a, X, and b A are the transverse conductivity, thermal conductivity, and thermoelectric 
coefficient; Q is the energy flux. The mass of the plasma accumulated in the layer near the 
wall is given by 

x 0 

a---.t NdX (3) 
0 

(X 0 is the boundary of the discharge zone). The plane X = 0 is assumed to be the wall, and 
the plasma occupies the region X > 0. Then the boundary conditions to Eqs. (i) and (2) are 
as follows: 

T(0) = 0, H(O) = HI, N(Xo) = 0 (4) 

(H l is the magnetic field in the insulator). The energy flux flowing into the discharge zone 
C 

from the plasma Q=-u~EH o + 5NoTov (v is the velocity of the inflowing plasma). Because the 

magnetic field is frozen into the plasma, far from the insulator 

v = cE/H o (5 )  

5 

On the boundary of the plasma with the insulator the plasma is not magnetized because 
of (4). In this region, as the temperature increases the coefficients X, bA increase away 
from the wall; the characteristic dimensions X, corresponding to the temperature T, increases 
according to (2) and accumulation of the discharge plasma occurs. When the plasma is mag- 
netized the coefficients X, bA decrease, and therefore the characteristic dimensions X as 
well as the density decrease. For this reason the region in which the degree of magnetiza- 
tion of the electrons me~e ~ i will make the main contribution to the mass of the plasma ac- 
cumulated in the discharge. For the unit of measurement of the pressure in the problem it 
is natural to choose P0, while the unit of measurement of the temperature IT] and the den- 
sity [N] are chosen so that for T = IT], N = [N] p ffi P0 and me~e ~ i (see [i]). From these 
conditions we obtain 

[r] = IN] = 

(m is the electron mass and A is the Coulomb logarithm). 

It is convenient to choose the unit of measurement of the coordinate X starting from 
Eq. (2), substituting into them for the temperature and density IT] and IN] from (6). Then, 

E (the electric field E is nega- introducing the dimensionless coordinate x=-- r176176176 

tive) and the dimensionless variables 

O~) = TI[T], n~) = NI[N], h(x) = H/~8~p0, ~ = --eEa/p,,: (7) 

the system of equations (I)-(3) can be rewritten in the form 

2nO+h ~ = i ,  4 = h' 3 03J~ + bO' = 1, 

( , ,  ) osl,o , , + ,.25~ h, (8) bOh' + -~- ? + .y~-f.  ~ = 

x 0 

~---- ] nd=, 
0 

where ~, 
by the approximate formulas [4] 

c~ = t 6'42uz + i ,86 
A 

2y~ + 2,e4 
Y i "~- 2,7Yi "}- 0,677 

3 h 0slt b, X, Y i depend on the degree of magnetization y------~eZe=~--~- and are determined 

b = y (i'5Y2 + 3,05) 4,66y ~ + i 2 , i  

A = 3,77 + ~4,8y ~ + y4, y, = y~ ] / ~  
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(A is the atomic weight). Here, unlike [i], the term 7i, representing the ionic thermal 
conductivity, which is a small correction, is taken into account. Taking into account the 
ionic thermal conductivity, however, changes the behavior of the solution in the region of 
strong magnetization x = x 0. The boundary conditions (4) in the new notation are written as 

h(0) = hi, 0(0) = 0, n(xo) = O, hz = H 1 / V ' ~ .  (9)  

Le t  us  e v a l u a t e  t h e  o r d e r s  o f  m a g n i t u d e  o f  t h e  q u a n t i t i e s  c h a r a c t e r i z i n g  t h e  d i s c h a r g e  
zone  f o r  l a r g e  6. I n  t h i s  c a s e ,  i t  f o l l o w s  f rom Eqs.  (8 )  t h a t  t h e  t h e r m o e l e c t r i c  t r a n s p o r t  
o f  m a g n e t i c  f l u x  makes t h e  main c o n t r i b u t i o n  t o  t h e  e l e c t r i c  f i e l d ,  w h i l e  h e a t  c o n d u c t i o n  
makes t h e  main c o n t r i b u t i o n  t o  t h e  e n e r g y  f l u x .  Then,  t a k i n g  i n t o  a c c o u n t  t h e  f a c t  t h a t  i n  
t h e  d i s c h a r g e  zone  y ~ 1, we o b t a i n  h ~ 1 /4~ ,  T ~ 6 0.2 , n ~ 6 - ~  x ~ 6 0.2 , 5 ~ 1. Thus 
t h e  p a r a m e t e r  5, c h a r a c t e r i z i n g  t h e  a c c u m u l a t e d  mass ,  i s  v i r t u a l l y  i n d e p e n d e n t  o f  6 and changes  
only for 6 ~ I. 

The results of numerical calculations of the system (8) with the boundary conditions (9) 
for h z = 0; 0.5; 0; 0.5, 6 = 0; 0; 10; 10, A = 2 are presented in Figs. 1-4, while the 
dependence of ~ on 6 and h I is presented in Fig. 5 (h I = 0; 0.25; 0.5; 0.75, lines 1-4). 

The calculations showed that the thermoelectric phenomena which play the main role in the 
transport of magnetic flux for 6 ~ 1 and lead to leakage of magnetic flux even into an insu- 
lator with a stronger magnetic field than in the plasma (Fig. 4) are numerically not very sig- 
nificant for 6 ~ i. Thus if in Eqs. (8) b is set equal to zero, then for 6 = 0 and h z = 0 
the value of ~ decreases by only 13%. An appreciable decrease in ~ (approximately by 30%) 
accompanying cutoff of the thermoelectric fluxes occurs only for 6 = 10. The ionic thermal 
conductivity, which is a correction ~I/~9-T~, makes a very small contribution to the accumu- 
lated mass ~, switching it off for 6 = 0, h~ = 0 decreases ~ by 2%. 
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Let us examine the dynamics of plasma deposition. The rate of accumulation of mass 

da/dt = Nov, according to (5) and (7), is determined from the differential equation a~__--~(~, 

e PoNo which for the entire plasma volume can be regarded as a boundary condition, de- 
hi) ~ ~o ' 

scribing the loss of plasma and magnetic flux. For H0(t) = const, N0(t) = const, p0(t) = 
const, Hi(t) = const, 8(t) = const the deposition of the plasma occurs according to the dif- 
fusion law 

~ f  c P~176 t, 
a = 2~  e H o 

E= ~ pOH~ eO,7rao,2co,gxo, 4 ~ (I0) 
 Vo,, Exl = V Po 

The effective coefficient of diffusion in this case D ~ 2gcp0/eNoH0, which for ~ ~ i, when 
= 0.5 (Fig. 5), gives D ~ cH0/8~eN 0 and approximately corresponds to the estimate of [2], 

while for ~ ~ I, when g = 0.25 (Fig. 5), D ~ cT0/eH 0 and exceeds the estimate of [3] and 
Bohm's thermal conductivity by approximately an order of magnitude. 

We shall examine the conditions of applicability of the solution presented for the prob- 
lem of a discharge near a wall. We confine our attention to megagauss magnetic fields and 
B ~ i. The plasma density N o must be much less than the plasma density in the discharge zone, 
i.e., in accordance with [i] N0(cm -3) < 3.102~ 1.6 (MG). In this case the problem can be 
regarded as quasistationary and Eqs. (2) and the boundary condition N(X0) = 0 can be employed. 
For N0(cm -~) s 3-i02~ (MG) the plasma density in the discharge zone is of the order of N o 
and the calculations performed are not applicable. The condition for being able to neglect 
the radiation losses in the discharge zone gives 

N0(cm-~)t(~sec) < 0.8.1020H 0 . 2 (MG). (ii) 

In addition, the role of the magnetically compressed discharge in the insulator was neglected, 
i.e., it was assumed that the magnetic flux flowing from the discharge along the plasma out- 
side the insulator is too weak for a magnetically compressed discharge to form in the insula- 
tor. This means that the electric fields (i0) must be less than the fields found in [I].* 
For an insulator consisting of organic glass HsCsO 2 we obtain from this condition for t • 
(usec) < 0.03/H 1.12 (MG) 

and for t(~sec) > 0.03/H~'I2(MG) 

N0(cm-a)t(~sec) > 9.101SH0.6(MG); (12) 

No(cm -3) > 2"i01% 1"72 (MG). (13) 

When the condition (ii) does not hold, i.e., for sufficiently long times, the discharge 
enters a stationary stage, described in [i]. When the conditions (12) and (13) no longer 
hold, i.e., for sufficiently small densities of the hydrogen plasma, the magnetically com- 
pressed discharge studied in [i] appears on the surface of the insulator. 

i, 

2. 

3. 

4. 
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